An energy-rich diet enhances expression of Na(+)/H(+) exchanger isoform 1 and 3 messenger RNA in rumen epithelium of goat.

نویسندگان

  • W Yang
  • Z Shen
  • H Martens
چکیده

Rumen epithelial Na(+)/H(+) exchanger (NHE) catalyzes the exchange of extracellular Na(+) for intracellular H(+). Thus, it is of importance in the maintenance of Na and pH homeostasis of rumen epithelial cells. We have tested the hypothesis that an increase in energy and protein intake induces alterations of NHE isoform 1, 2, and 3 (NHE1, NHE1, and NHE3, respectively) mRNA abundance in the rumen epithelium of goats. Goats (n = 26) were randomly allocated to 2 experiments (n = 16 in Exp. 1, and n = 10 in Exp. 2) and fed either peanut straw ad libitum [PNS, n = 8 in Exp. 1, and n = 5 in Exp. 2; 600 kJ of ME/(kg(0.75)·d)] or PNS + concentrate [CF, n = 8 in Exp. 1, and n = 5 in Exp. 2; 1,000 kJ of ME/(kg(0.75)·d)] for 42 d. Concentrate (400 g/d) was given daily (0800 to 1700 h) in 4 equal portions at 3-h intervals. In Exp. 1, the goats were euthanized 2 h after the last portion of concentrate was fed, and in Exp. 2, the goats were euthanized after a fasting period of 16 h. In Exp. 1, goats in the CF treatment exhibited a greater ruminal short-chain fatty acid (SCFA) concentration (140.6 ± 1.30 mM) compared with those in the PNS treatment (114.3 ± 3.11 mM; P < 0.001), and pH decreased from 6.9 ± 0.09 to 5.9 ± 0.04 (P < 0.001). Correspondingly, the mRNA expression of NHE1 and NHE3 in the rumen epithelium was greater by 20% (P = 0.041) and 25% (P = 0.043) for goats in the CF treatment than for those in the PNS treatment. However, in Exp. 2, 16 h of fasting abolished differences in ruminal SCFA concentration, pH, and NHE mRNA expression between goats in the CF and PNS treatments. In both Exp. 1 and 2, a positive correlation was observed between ruminal SCFA concentration and expression of mRNA in NHE1 and NHE3, whereas expression was negatively correlated with ruminal pH. In in vitro studies with isolated rumen epithelial cells from goats fed dried grass, exposure to pH of 6.8 or to 20 mM SCFA increased (P < 0.01) NHE1 and NHE3 mRNA expression, as compared with exposure to pH of 7.4 or the absence of SCFA. A combination of reduced pH (6.8) and SCFA (20 mM) further enhanced (P < 0.05) NHE1 and NHE3 mRNA expression, indicating synergism between an increased concentration of SCFA and low pH (P < 0.05). Messenger RNA expression of NHE2 did not vary in vitro with pH (6.8) or SCFA (20 mM) or in vivo in Exp. 1 and 2. Thus, diet-dependent rumen epithelial NHE1 and NHE3 expression is probably related to ruminal SCFA concentration and pH, but that is not the case with NHE2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptomic Changes in the Rumen Epithelium of Cattle after the Induction of Acidosis

The transition from normal forage to a highly fermentable diet to achieve rapid weight gain in the cattle industry can induce ruminal acidosis. The molecular host mechanisms that occur in acidosis are largely unknown. Therefore, the histology and transcriptome profiling of rumen epithelium was investigated in normal and acidosis animals to understand the molecular mechanisms involved in the dis...

متن کامل

Downregulation of Cellular Protective Factors of Rumen Epithelium in Goats Fed High Energy Diet

Energy-rich diets can challenge metabolic and protective functions of the rumen epithelial cells, but the underlying factors are unclear. This study sought to evaluate proteomic changes of the rumen epithelium in goats fed a low, medium, or high energy diet. Expression of protein changes were compared by two-dimensional differential gel electrophoresis followed by protein identification with ma...

متن کامل

Epithelial response to high-grain diets involves alteration in nutrient transporters and Na+/K+-ATPase mRNA expression in rumen and colon of goats.

Emerging evidence at the mRNA level indicates that feeding high-grain diets to ruminants leads to coordinated changes in the molecular response of the rumen epithelium. Yet, epithelial adaptation of the hindgut to increasing dietary grain levels has not been established in ruminants. Therefore, the objective of this study was to characterize alterations in mRNA expression associated with nutrie...

متن کامل

Short-chain fatty acids and acidic pH upregulate UT-B, GPR41, and GPR4 in rumen epithelial cells of goats.

Currently, the mechanism(s) responsible for the regulation of urea transporter B (UT-B) expression levels in the epithelium of the rumen remain unclear. We hypothesized that rumen fermentation products affect ruminal UT-B expression. Therefore, the effects of short-chain fatty acids (SCFA), pH, ammonia, and urea on mRNA and protein levels of UT-B were assayed in primary rumen epithelial cell cu...

متن کامل

Effect of chloride on pH microclimate and electrogenic Na+ absorption across the rumen epithelium of goat and sheep.

Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogeni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of animal science

دوره 90 1  شماره 

صفحات  -

تاریخ انتشار 2012